طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقهبندی کننده ماشین بردار پشتیبان و میدانهای تصادفی مارکوف
نویسندگان
چکیده مقاله:
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روشهایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده میکند، نسبت به روشهای مبتنی بر فقط اطلاعات طیفی، دقیقتر میباشد. اگرچه طبقهبندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور میباشد ولی این طبقهبندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل میکند، که این یک محدودیت برای استفاده از آن میباشد. در این مقاله، تلفیق ماشین بردار پشتیبان با میدانهای تصادفی مارکوف به منظور طبقهبندی دادههای پلاریمتری رادار با روزنه مجازی از یک منطقه شامل گونههای مختلف جنگلی، پوشش گیاهی و آب براساس افزودن اطلاعات مکانی انجام میشود. بهمنظور انتخاب ویژگیهای پلاریمتری مناسب و همچنین برآورد خودکار پارامترهای بهینه مورد نیاز، از الگوریتم ژنتیک استفاده میشود. بهمنظور بررسی عملکرد روش پیشنهادی، نتایج بدست آمده از این روش با نتایج تعدادی از روشهای پایه در طبقهبندی تصاویر پلاریمتری و دو روش جدید به نامهای aMRF و MSVC مقایسه شد. در نهایت طبقهبندی به این روش نسبت به روشهای ویشارت، ویشارت-مارکوف، SVM، aMRF و MSVC به ترتیب 19، 14، 11، 5 و 3 درصد افزایش دقت را نشان میدهد.
منابع مشابه
طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقه بندی کننده ماشین بردار پشتیبان و میدان های تصادفی مارکوف
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روش هایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده می کند، نسبت به روش های مبتنی بر فقط اطلاعات طیفی، دقیق تر می باشد. اگرچه طبقه بندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور می باشد ولی این طبقه بندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل می کند، که این یک محدودیت برای استفاده از آن می ...
متن کاملارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف
در این مقاله یک روش نوین طبقهبندی متنی به منظور طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (SVM) و طبقهبندیکننده ویشارت عمل میکند. بدین ترتیب این روش از مزایای هر دو نوع روشهای پارامتریک و غیر پارامتریک بهره میبرد. در این روش، ابتدا تابع انرژی اولیه میدانهای تصادفی مارکوف (MRF) در یک همسایگی از هر پیکسل محاسبه میگردد. سپس با ...
متن کاملارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف
در این مقاله یک روش نوین طبقهبندی متنی به منظور طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (svm) و طبقهبندیکننده ویشارت عمل میکند. بدین ترتیب این روش از مزایای هر دو نوع روشهای پارامتریک و غیر پارامتریک بهره میبرد. در این روش، ابتدا تابع انرژی اولیه میدانهای تصادفی مارکوف (mrf) در یک همسایگی از هر پیکسل محاسبه میگردد. سپس با ...
متن کاملتلفیق تصاویر رادار با روزنه مجازی و اپتیک با استفاده از تبدیل کرولت
ماهواره های سنجش از دور، دادههایی با خصوصیات طیفی و مکانی مختلفی از سطح زمین جمعآوری میکنند که هرکدام بخشی از خصوصیات عوارض را نمایان میسازند. گاهاً اطلاعات بدست آمده از یک سنجنده به تنهایی پاسخگوی نیازهای مورد نظر ما نیست. با وجود اینکه دادههای چند طیفی[1] اطلاعات غنی طیفی را از عوارض مختلف به ما میدهد، اما بهطور قابل توجهی تحت تأثیر عوامل محیطی مانند دود، مه، ابر و میزان نور خورشید قرا...
متن کاملطبقهبندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقهبندیکنندههای چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی SVM و قطعات...
متن کاملالگوریتم حد آستانهگذاری کمینهخطا برای آشکارسازی نظارت نشده تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه مجازی
در این مقاله، یک روش نظارت نشده برای آشکارسازی تغییرات با استفاده از تصاویر پلاریمتری رادار با روزنه ترکیبی ارائه گردیده است. آماره آزمون ویشارت تصحیح یافته متقارن، به منظور ارزیابی برابری دو ماتریس کواریانس چندمنظر مربوط به دو تصویر پلاریمتری SAR در دو زمان مختلف بکار گرفته شده تا تصویر تکباندی خروجی آن در یک الگوریتم نظارت نشده حد آستانه گذاری قرار گیرد و در نهایت نقشه تغییر/عدم تغییر بدست آ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 1- 18
تاریخ انتشار 2016-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023